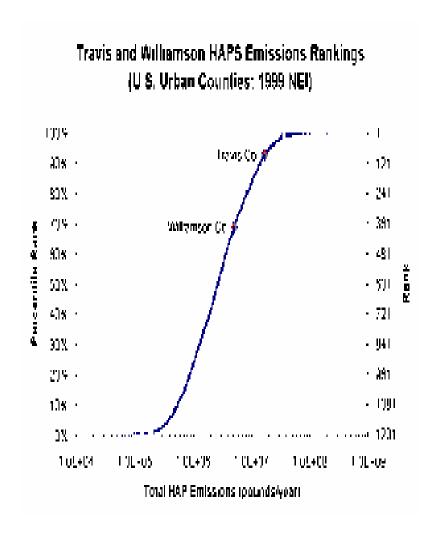
Austin – Round Rock Toxics Study (ARTS)

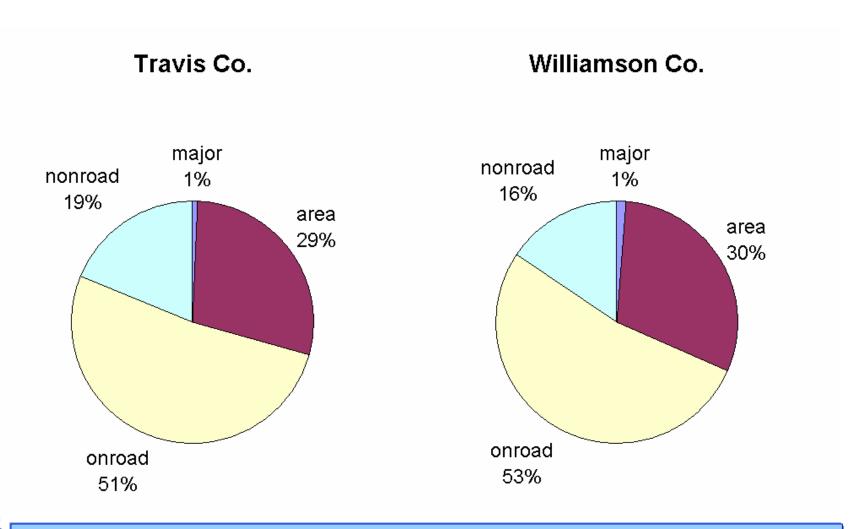
Albert Hendler and Shona Briscoe
URS Corporation
November 8, 2006

ARTS Objectives

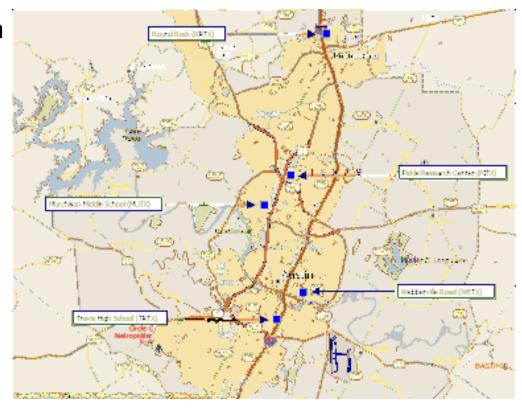
- Measure and report levels of common urban air toxics
- Identify chemicals of potential concern
- Establish baseline for measuring trends
- Inform the public


Project Team

- Sponsored by U.S. EPA Region 6
- Managed by Capital Area Council of Governments (CAPCOG)
- Field sampling by URS Corporation
- Laboratory Analysis by ERG


Austin-Round Rock Quick Facts

- 2005 population estimate – 1.2 million
 - 38th largest U.S. MSA in 2000
- Two largest counties, Travis and Williamson, ranked 85th and 376th in 1999 total NEI HAPS Emissions (among 1207 U.S. urban counties)


Travis and Williamson County Total HAP Emissions

ARTS Overview

- 5 sampling sites
- 12-month sampling duration
 - Jun 05 Jun 06
- 24-hour sampling period
- Every 12th day sampling frequency
 - Approximately 30 samples per site
 - Field duplicates at one site
- 83 chemicals target chemicals:
 - 59 volatile organic compounds
 - 12 carbonyls
 - 12 metals

Measurement Methods

Target Chemicals	Method	Sampling Media	Analysis Technique
59 VOC	TO-15	SS canister	GC-MS
12 Carbonyls	TO-11A	DNPH cartridge	HPLC
12 Metals	IO-3.5	Quartz Fiber Filters	ICP/MS
Hexavalent Chromium	Modified CARB 039	Bicarbonate- impregnated cellulose filters	IC

ARTS Sampling Equipment

Data Treatment

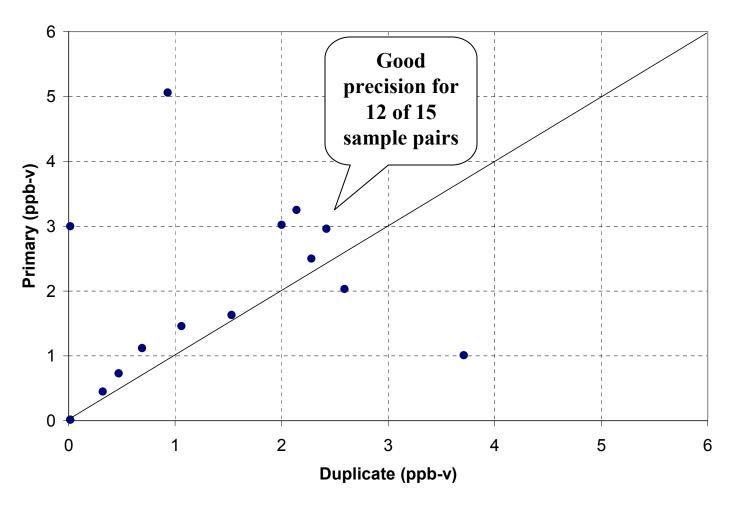
- ½ the detection limit (DL) was substituted for all non detects
- ½ the DL was substituted for all values reported below the DL
- Average field blank levels for carbonyls and metals were subtracted from reported ambient values

Data Analysis

- Comparison with reference levels
- Estimation of excess cancer risks
- Analysis of spatial variation
- Comparison with other cities

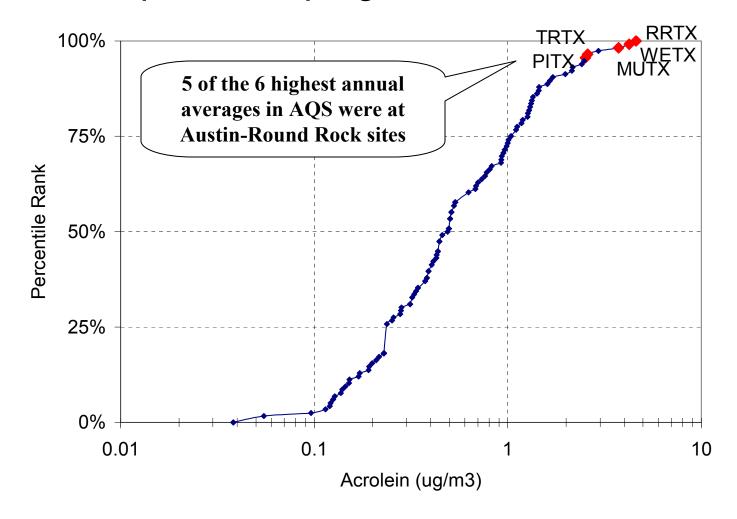
Reference Concentration Levels and Unit Risk Estimates

- EPA NATA health effects criteria
 - http://www.epa.gov/ttn/atw/nata1999/99pdf s/healtheffectsinfo.pdf
- RfC: reference concentration level used to screen for possible non-cancer adverse exposures
- URE: upper-bound excess cancer risk estimated to result from a lifetime of continuous exposure to 1 µg/m³

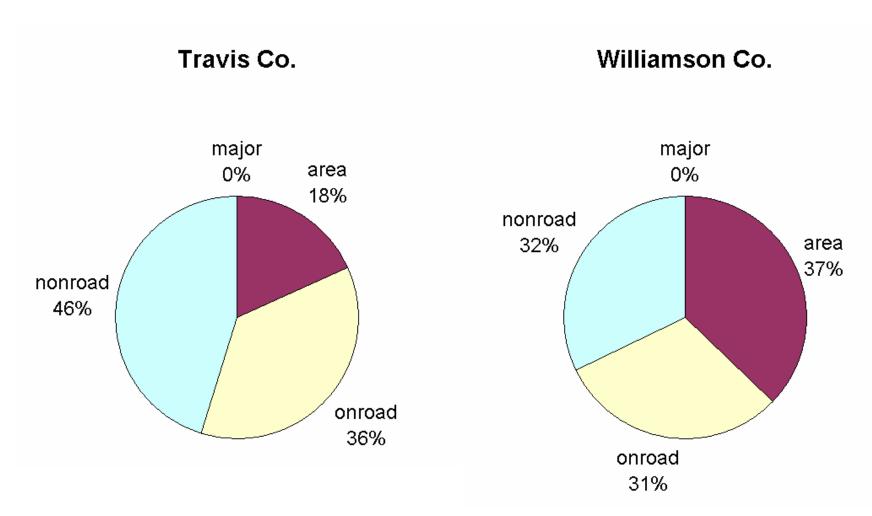

Top 10 Non-Cancer Hazard Quotients

(Hazard Quotient = Avg. Conc. ÷ RfC)

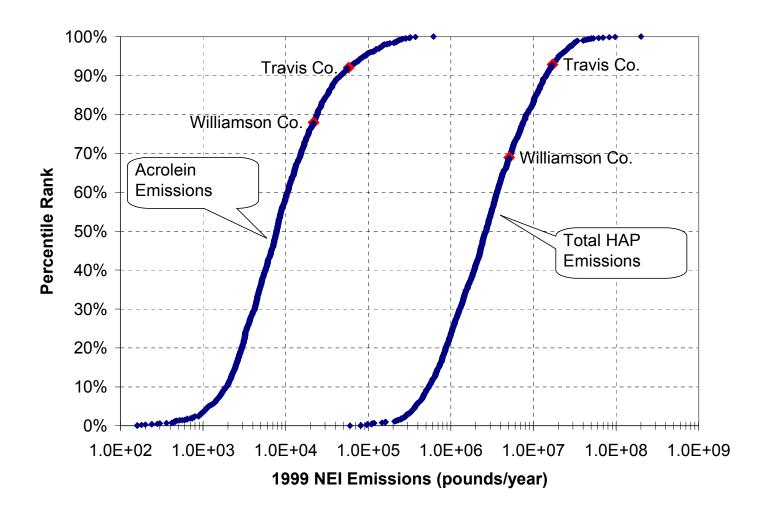
Chemical	Chemical Average Concentrations (µg/m³)					RfC (µg/m³)	Highest Hazard
	MUTX	PITX	RRTX	TRTX	WETX		Quotient
Acrolein	3.73	2.51	4.60	2.58	4.24	0.02	230
Formaldehyde	2.77	2.84	3.26	2.97	2.72	9.8	0.33
Acetaldehyde	1.33	1.32	1.37	1.39	1.61	9	0.18
1,3-Butadiene	0.07	0.07	0.07	0.14	0.29	2	0.14
Manganese	0.005	0.006	0.006	0.005	0.007	0.05	0.14
1,2-Dibromoethane	0.10	0.10	0.10	0.11	0.10	0.8	0.14
Acrylonitrile	0.07	0.06	0.06	0.06	0.14	2	0.07
Benzene	0.94	0.80	0.98	1.11	1.77	30	0.06
m,p-Xylene	0.89	0.80	0.90	1.02	4.69	100	0.05
Arsenic	0.0005	0.0005	0.0005	0.001	0.001	0.03	0.04



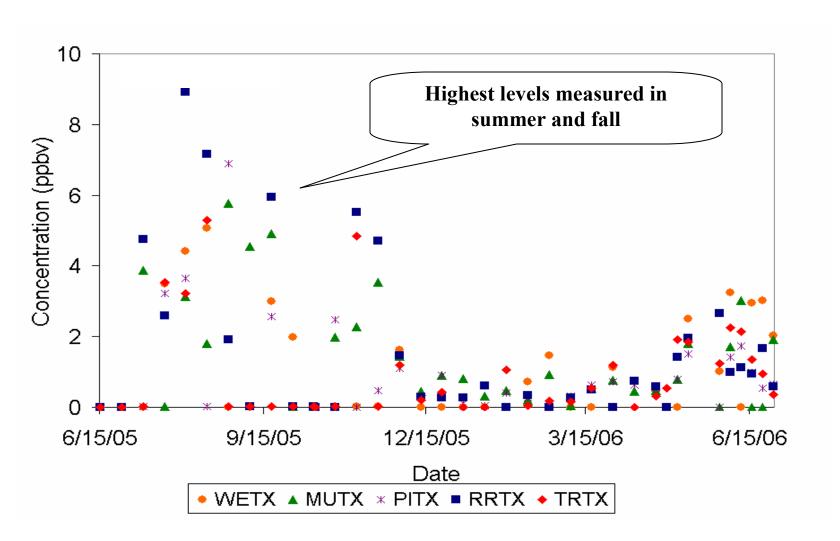
Acrolein Canister Duplicates Average RPD = 50% (N=15)



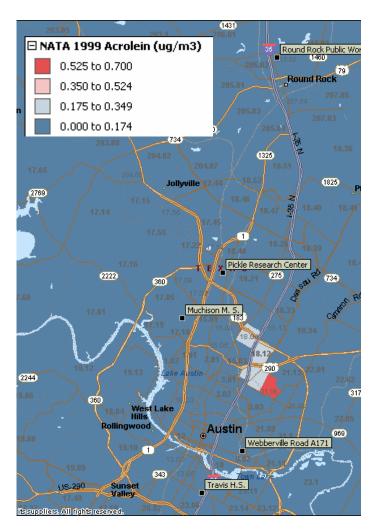
U.S. 2005 Annual Average Acrolein Levels from http://www.epa.gov/air/data/index.html



Travis and Williamson County Acrolein Sources (1999 NEI)

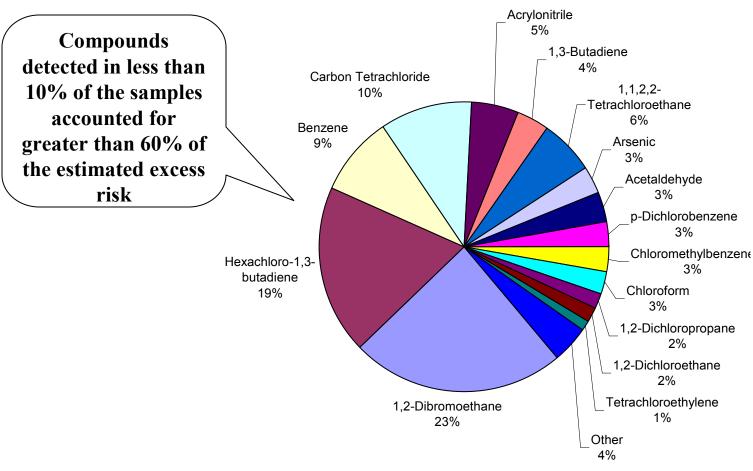


Travis and Williamson County Acrolein and Total HAP Emissions Rankings (U.S. Urban Counties)



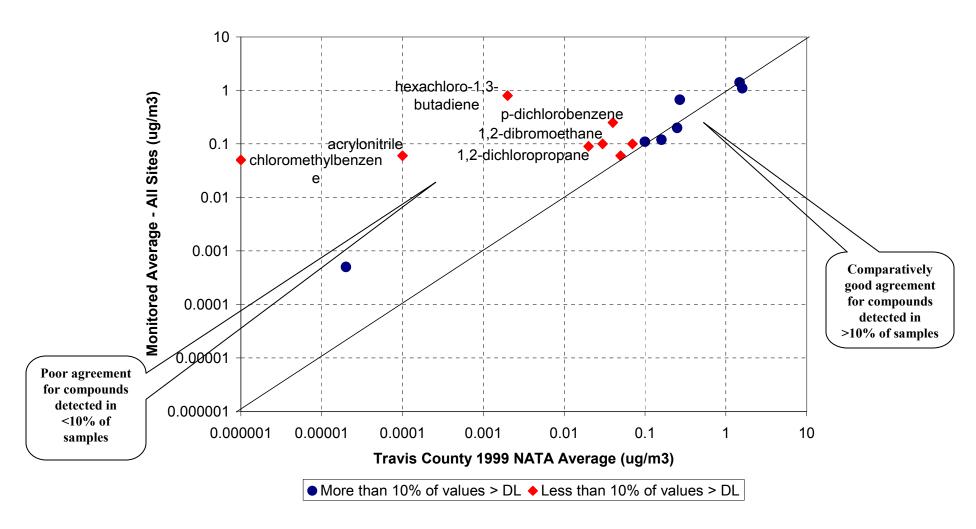
Acrolein Time Series

Comparison of NATA 1999 Acrolein Estimates with ARTS 2005-06 Measured Concentrations


Top 15 Cancer Risks

(Excess Risk = Avg. Conc. \times URE \times 10⁶)

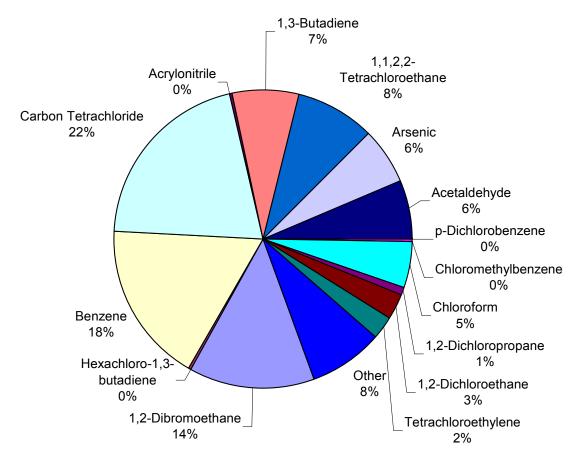
Chemical Name (% > DL)	Average Concentrations (μg/m³)					URE (μg/m³) ⁻¹	Highest Excess
	MUTX	PITX	RRTX	TRTX	WETX		Risk (per million)
1,2-Dibromoethane (1)	0.10	0.10	0.10	0.11	0.10	0.00022	24.2
Hexachloro-1,3-butadiene (1)	0.83	0.86	0.80	0.80	0.80	0.000022	18.9
Benzene (100)	0.94	0.80	0.98	1.11	1.77	7.8E-06	13.8
Carbon Tetrachloride (100)	0.63	0.68	0.66	0.68	0.69	0.000015	10.4
Acrylonitrile (3)	0.07	0.06	0.06	0.06	0.14	0.000068	9.7
1,3-Butadiene (60)	0.07	0.07	0.07	0.14	0.29	0.00003	8.7
1,1,2,2-Tetrachloroethane (9)	0.10	0.10	0.10	0.10	0.10	0.000058	5.9
Arsenic (100)	0.0005	0.0005	0.0005	0.0010	0.0011	0.0043	4.6
Chloroform (10)	0.07	0.11	0.18	0.09	0.10	0.000023	4.2
Acetaldehyde (100)	1.33	1.32	1.37	1.39	1.61	2.2E-06	3.5
p-Dichlorobenzene (9)	0.23	0.24	0.26	0.26	0.29	0.000011	3.2
Chloromethylbenzene (0)	0.06	0.05	0.05	0.06	0.05	0.000049	2.7
1,2-Dichloropropane (0)	0.08	0.08	0.09	0.08	0.09	0.000019	1.7
1,2-Dichloroethane (0)	0.06	0.05	0.05	0.06	0.06	0.000026	1.7
Tetrachloroethylene (46)	0.27	0.11	0.26	0.19	0.18	5.6E-06	1.5


Percentages of Total Excess Cancer Risk Attributed to ARTS Pollutants – All Sites

1/2 DL Substituted for Non-Detects

Comparison of Measured Levels with 1999 NATA Average Concentrations for Travis County

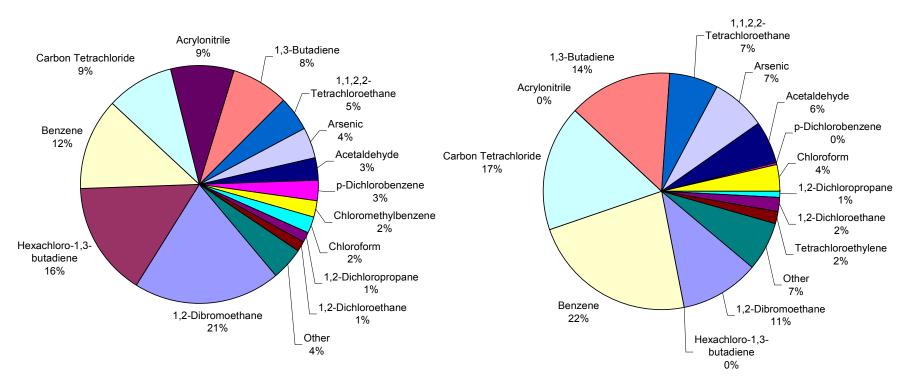
Top 10 Cancer Risks


(Risk Estimated with 1999 NATA Travis County Average Concentrations Substituted for Compounds with <10% of Values > DL)

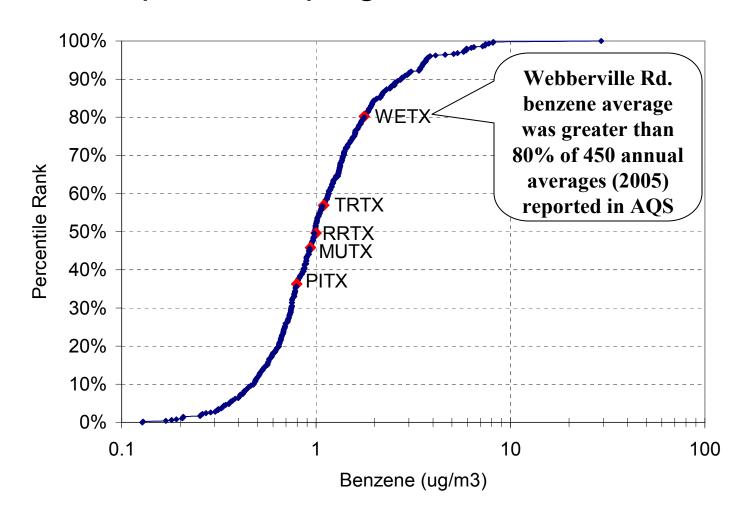
Chemical Name (% > DL)	Average Concentrations (µg/m³) (1999 NATA Travis County Average Concentrations Substituted for Compounds with <10% of Values > DL)					URE (μg/m³) ⁻¹	Highest Excess Risk (per million)
	MUTX	PITX	RRTX	TRTX	WETX		
Benzene (100)	0.94	0.80	0.98	1.11	1.77	7.8E-06	13.8
Carbon Tetrachloride (100)	0.63	0.68	0.66	0.68	0.69	0.000015	10.4
1,3-Butadiene (60)	0.07	0.07	0.07	0.14	0.29	0.00003	8.7
1,2-Dibromoethane (1)	0.03	0.03	0.03	0.03	0.03	0.00022	6.6
Arsenic (100)	0.0005	0.0005	0.0005	0.0010	0.0011	0.0043	4.6
Chloroform (10)	0.07	0.11	0.18	0.09	0.10	0.000023	4.2
1,1,2,2-Tetrachloroethane (0)	0.07	0.07	0.07	0.07	0.07	0.000058	4.1
Acetaldehyde (100)	1.33	1.32	1.37	1.39	1.61	2.2E-06	3.5
Tetrachloroethylene (46)	0.27	0.11	0.26	0.19	0.18	5.6E-06	1.5
1,2-Dichloroethane (0)	0.05	0.05	0.05	0.05	0.05	0.000026	1.3

Percentages of Total Excess Cancer Risk Attributed to ARTS Pollutants – All Sites

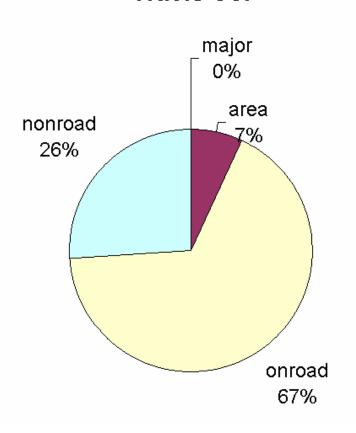
Travis County 1999 NATA Average Concentrations Substituted for Compounds w <10% of Values > DL

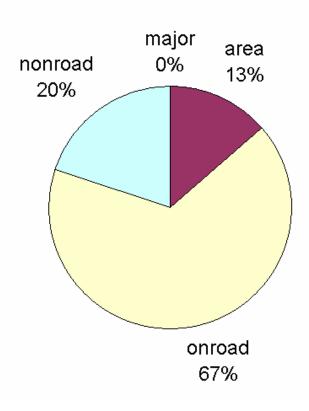


Percentages of Total Excess Cancer Risk Attributed to ARTS Pollutants – Webberville Rd.


1/2 DL Substituted for Non-Detects

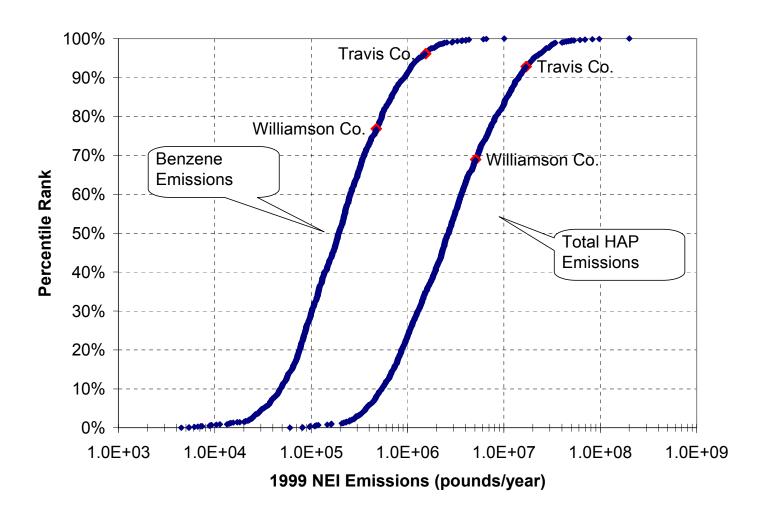
Travis County 1999 NATA Average Concentrations Substituted for Compounds w <10% of Values > DL


U.S. 2005 Annual Average Benzene Levels from http://www.epa.gov/air/data/index.html

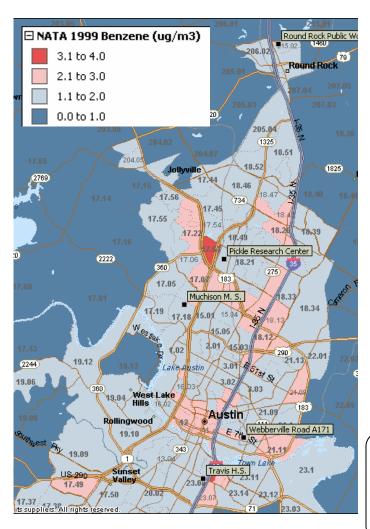


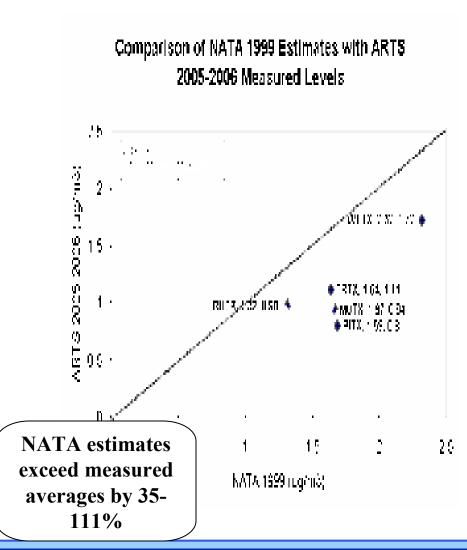
Travis and Williamson County Benzene Sources (1999 NEI)

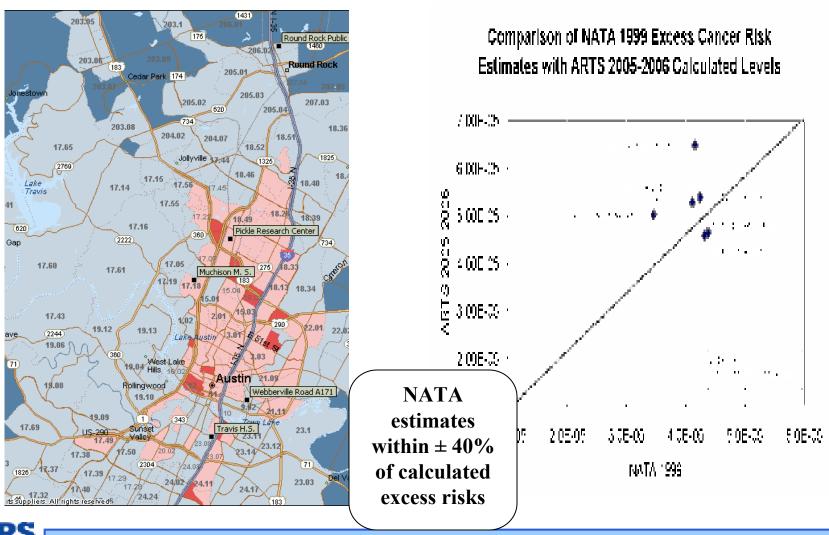
Travis Co.

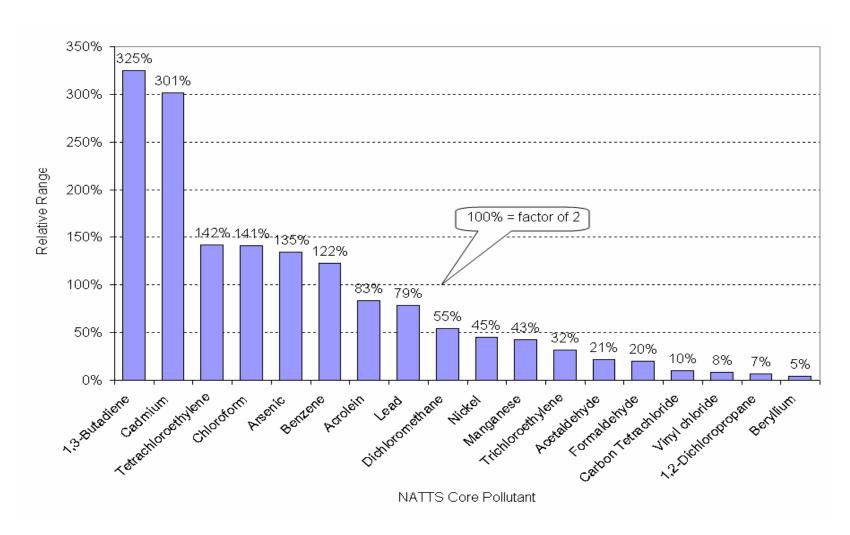


Williamson Co.

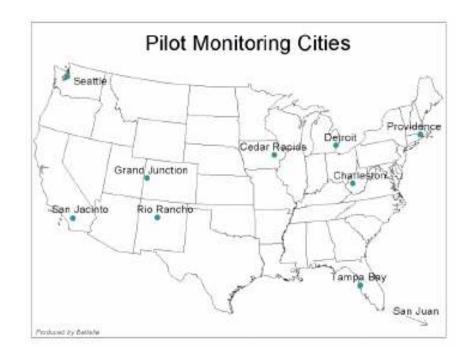



Travis and Williamson County Benzene and Total HAP Emissions Rankings (U.S. Urban Counties)

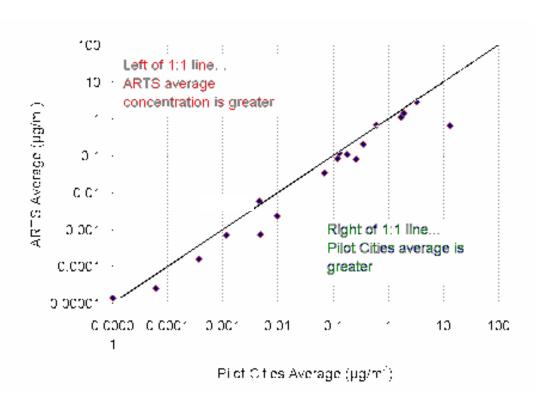

Comparison of NATA 1999 Benzene Estimates with ARTS 2005-06 Measured Concentrations



Comparison of NATA 1999 Excess Cancer Risk Estimates with ARTS 2005-06 Measured Levels


ARTS Spatial Variability (Highest Site Average – Lowest Average) ÷ Lowest Average

Comparison of Results with Data from Other Cities


- 10-city air toxics pilot study
- 2001-2002
- http://www.ladco.org /toxics.html

ARTS Average Levels Compared to Pilot Cities Average Levels

	Average (µg/m³)			
ANALYTE	ARTS	Pilot Cities		
1,2-Dichloropropane	0.085	0.120		
1,3-Butadiene	0.118	0.130		
Acetaldehyde	1.411	1.910		
Acrolein	3.474			
Arsenic	6.99E-04	1.15E-03		
Benzene	1.079	1.700		
Beryllium	1.37E-05	1.00E-05		
Cadmium	1.58E-04	3.70E-04		
Carbon Tetrachloride	0.666	0.610		
Chloroform	0.110	0.180		
Formaldehyde	2.924	3.290		
Hexavalent Chromium	2.56E-05	6.00E-05		
Lead	2.33E-03	9.68E-03		
Manganese	5.82E-03	4.59E-03		
Dichloromethane	0.643	13.100		
Nickel	7.20E-04	4.85E-03		
Tetrachloroethylene	0.202	0.350		
Trichloroethylene	0.079	0.260		
Vinyl chloride	0.034	0.070		

Summary (Page 1 of 3)

- 83 chemicals in ambient air measured by the Austin-Round Rock Toxics Study...
- Acrolein levels exceeded EPA non-cancer RfC by wide margin
 - Among the highest average levels reported in U.S.
 - Duplicate precision appears good
 - Strong seasonal variation (summer-fall maximum)
 - No known sources that would distinguish Austin from other U.S. cities
 - No agreement with NATA 1999 predictions
 - Only target chemical with hazard quotient > 1

Summary (Page 2 of 3)

- Compounds that were detected less than 10% of the time accounted for greater than 60% of the estimated excess cancer risk when ½ DL was substituted for non-detects
 - 1,2-dibromoethane; hexachloro-1,3-butadiene were greatest factors
- Alternate approach for treating compounds with <10% frequency of detection substituted 1999 NATA average concentrations for Travis County
 - Comparatively good agreement between average measured levels and Travis County NATA averages for compounds detected >10% of the time
 - Poor agreement for compounds detected <10% of the time
- Benzene, carbon tetrachloride, and 1,2-dibromoethane accounted for greatest fractions of estimated excess cancer risk when NATA substitution was used
 - 1,3-butadiene also comparatively high at site having greatest estimated risk

Summary (Page 3 of 3)

- Average levels of 62 of the measured chemicals varied by less than a factor of two from site to site
 - Includes 12 of 18 NATTS core pollutants
 - Site with highest levels of several VOC appears to have greater mobile source influence
- The average levels of core pollutants measured in Austin-Round Rock were generally lower than the average levels measured in the 10 Cities Air Toxics Pilot Study

Future Work

- Source apportionment using Positive Matrix Factorization (in progress)
- More comprehensive comparison with 1999 NATA estimates
- Additional field measurements, quality assurance, and methods comparison for acrolein (discussing possible scope with TCEQ)

